Histidine kinase activity of the ethylene receptor ETR1 facilitates the ethylene response in Arabidopsis.

نویسندگان

  • Brenda P Hall
  • Samina N Shakeel
  • Madiha Amir
  • Noor Ul Haq
  • Xiang Qu
  • G Eric Schaller
چکیده

In Arabidopsis (Arabidopsis thaliana), ethylene is perceived by a receptor family consisting of five members. Subfamily 1 members ETHYLENE RESPONSE1 (ETR1) and ETHYLENE RESPONSE SENSOR1 (ERS1) have histidine kinase activity, unlike the subfamily 2 members ETR2, ERS2, and ETHYLENE INSENSITIVE4 (EIN4), which lack amino acid residues critical for this enzymatic activity. To resolve the role of histidine kinase activity in signaling by the receptors, we transformed an etr1-9;ers1-3 double mutant with wild-type and kinase-inactive versions of the receptor ETR1. Both wild-type and kinase-inactive ETR1 rescue the constitutive ethylene-response phenotype of etr1-9;ers1-3, restoring normal growth to the mutant in air. However, the lines carrying kinase-inactive ETR1 exhibit reduced sensitivity to ethylene based on several growth response assays. Microarray and real-time polymerase chain reaction analyses of gene expression support a role for histidine kinase activity in eliciting the ethylene response. In addition, protein levels of the Raf-like kinase CONSTITUTIVE TRIPLE RESPONSE1 (CTR1), which physically associates with the ethylene receptor ETR1, are less responsive to ethylene in lines containing kinase-inactive ETR1. These data indicate that the histidine kinase activity of ETR1 is not required for but plays a modulating role in the regulation of ethylene responses. Models for how enzymatic and nonenzymatic regulation may facilitate signaling from the ethylene receptors are discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Histidine Kinase Activity of the Ethylene Receptor ETR1 Facilitates the Ethylene Response in Arabidopsis1[W][OA]

In Arabidopsis (Arabidopsis thaliana), ethylene is perceived by a receptor family consisting of five members. Subfamily 1 members ETHYLENE RESPONSE1 (ETR1) and ETHYLENE RESPONSE SENSOR1 (ERS1) have histidine kinase activity, unlike the subfamily 2 members ETR2, ERS2, and ETHYLENE INSENSITIVE4 (EIN4), which lack amino acid residues critical for this enzymatic activity. To resolve the role of his...

متن کامل

Ethylene receptor ETHYLENE RECEPTOR1 domain requirements for ethylene responses in Arabidopsis seedlings.

Ethylene influences many processes in Arabidopsis (Arabidopsis thaliana) through the action of five receptor isoforms. We used high-resolution, time-lapse imaging of dark-grown Arabidopsis seedlings to better understand the roles of each isoform in the regulation of growth in air, ethylene-stimulated nutations, and growth recovery after ethylene removal. We found that ETHYLENE RECEPTOR1 (ETR1) ...

متن کامل

Histidine kinase activity of the ETR1 ethylene receptor from Arabidopsis.

ETR1 represents a prototypical ethylene receptor. Homologues of ETR1 have been identified in Arabidopsis as well as in other plant species, indicating that ethylene perception involves a family of receptors and that the mechanism of ethylene perception is conserved in plants. The amino-terminal half of ETR1 contains a hydrophobic domain responsible for ethylene binding and membrane localization...

متن کامل

Requirement of the histidine kinase domain for signal transduction by the ethylene receptor ETR1.

In Arabidopsis, ethylene is perceived by a receptor family consisting of five members, one of these being ETR1. The N-terminal half of ETR1 functions as a signal input domain. The C-terminal region of ETR1, consisting of a His kinase domain and a putative receiver domain, is likely to function in signal output. The role of the proposed signal output region in ethylene signaling was examined in ...

متن کامل

Canonical histidine kinase activity of the transmitter domain of the ETR1 ethylene receptor from Arabidopsis is not required for signal transmission.

Ethylene signaling in plants is mediated by a family of receptors related to bacterial two-component histidine kinases. Of the five members of the Arabidopsis ethylene receptor family, members of subfamily I (ETR1 and ERS1) contain completely conserved histidine kinase domains, whereas members of subfamily II (ETR2, EIN4, and ERS2) lack conserved residues thought to be necessary for kinase acti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Plant physiology

دوره 159 2  شماره 

صفحات  -

تاریخ انتشار 2012